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Strong anharmonicity effects for vibrations in crystals with 
impurities: local biphonons and triphonons 

by V. M. AGRANOVICH and 0. A. DUBOVSKY 
Institute of Spectroscopy USSR Academy of Sciences, Troitsk, 

Moscow obl., 142092, U.S.S.R. 

The present paper discusses special features in the formation of local vibrations 
in a crystal having an isotopic defect when these vibrations are in the regions of two 
and three-particle states of optical phonons and anharmonicity is taken into 
account. The existence of anharmonicity leads, in some cases, to a cardinal change in 
the spectrum of local states. Also considered are the conditions for the formation of 
local biphonons, as well as the available experimental data. Dispersion equations 
are derived in a number of special cases for triply-bound phonon complexes 
(triphonons), and conditions are discussed for their localization on an isotopic 
defect. 

1. Introduction: local biphonons 
The investigation of elementary excitations in imperfect crystals containing crystal 

defects is a part of solid-state physics. Theoretical investigations in this line were begun 
by Lifshitz (1947, 1956) and by Montroll and Potts (1955, 1956) in the harmonic 
approximation. It was shown in these papers that the presence of defects, in general, 
leads to the formation of a new type of vibrational states-local phonons, localized in 
the vicinity of the defects. These states appear in spectra of various types in the form of 
separate lines and bands located outside the continuum of zone states. 

In recent years, many more experimental and theoretical investigations have been 
conducted on systems in which, under definite conditions, the interaction of one- 
quantum elementary excitations (i.e. phonons) can and do lead to the formation of their 
bound complexes. The present communication deals mainly with the spectral features 
of the simplest of the above-mentioned complexes, i.e. biphonons and triphonons. 

Many qualitatively new features appear in going over to the spectra of many- 
particle excitations in crystals having defects. Appropriate theory, requiring in this case 
that anharmonicity be taken into account, becomes substantially more complex. 

For the sake of simplicity we assume that the crystal contains only the simplest 
point defects: isotopic substitution impurities (the isotopic shift A). We point out, first of 
all, that in the harmonic approximation, for instance in a crystal with one molecule per 
unit cell, the frequency mi1) of local vibrations split off from the zone n(k) = E(k)/h of 
non-degenerate optical vibrations, satisfies the equation: 

where N is the total number of molecules. 
It is a well known fact (see, for example, Lifshitz 1956) that in three-dimensional 

crystals this equation has a solution for mi1), outside the frequency zone Q(k), only at 
sufficiently large values of IAI, i.e. lAl >A:’), where A:’)= TI and TI is the width of the 
optical phonon zone in a perfect crystal. If the preceding inequality is complied with, 
local states appear, not only in the ,region ol’) z SZ wE(k)/h, but also in the region of the 
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94 V. M .  Agranovich and 0. A. Dubovsky 

second and higher overtones, i.e. at the frequencies 2w$'), 3wI1), etc. This is, of course, 
obvious when it is considered that all these states correspond to different quantum 
numbers (n= 1, 2,. . .) of a harmonic oscillator, i.e. the normal local vibrations of a 
crystal having ad isotopic impurity. If, however, the inequality lAl >A',') is not complied 
with, i.e. if IAI <A:'), then equation (1) has no solutions for wf') that lie outside the zone 
R(k). In this latter case the presence of an isotopic defect does not lead to the formation 
of local states. It is clear that in the harmonic approximation such states do not appear 
either in the fundamental (i.e. at ail )=R) or in the overtone region. 

Taking anharmonicity into account can qualitatively chadge the pattern of the 
local-states spectrum. Specifically, it can lead to the formation bf such states even in 
cases (1A1 <A',')) when in the harmonic approximation there are no states whatsoever 
localized in the region of the defect (Agranovich 1970). 

Indeed, let us assume that the anharmonicity constant A is large compared to the 
width Tl = 2T (where T is the halfwidth) of the phonon zone. In this case the width of 
the biphonon zone is of the order of T f / A ,  i.e. small compared to the width Tl of the 
optical phonon zone. Under these same conditions, i.e. at sufficiently strong 
anharmonicity, the biphonon state, in a good approximation, is the superposition of 
the states of twofold-excited molecules. The wavefunction of the relative motion for the 
biphonon in this case is strongly localized. It is clear then that an elementary 
generalization of an equation of the type of (1) can be used to find local states. 
Specifically, the equation for the frequency 01') of a local biphonon, i.e. the localized 
state split off the biphonon zone, can be written as follows: 

where E(K) is the energy of a biphonon with a wavevector K in a perfect crystal, 2a is the 
isotopic shift of the twofold-excited state of an impurity molecule: 

a = A  - (A'- A)  (3) 
and A' is its anharmonicity constant. Since the states of the biphonon, like those of the 
phonon, are characterized by specifying only a single value of the wavevector, an 
analysis of equation (2) is analogous to that of equation (1). On the basis of the results of 
such an analysis, which we have already used for phonons, it can be contended that a 
local biphonon is formed if 

214 >A:') (4) 
where A',2)= T,, T, is the width of the biphonon zone (T2 x T:/A) or, for example, at 
A'=A: 

21A1> AP). (5)  

It is clear that inequality (4) or (5) can be complied with even in the case when 

i.e. when the two following inequalities are simultaneously complied with (for example, 
at A' = A): 

Complying with the right-hand inequality does not lead to the formation of local states 
in the region of the fundamental. But if we comply with the second (left-hand) 
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Anharmonicity efects for vibrations in crystals with impurities 95 

inequality, splitting off of the level of a local biphonon is provided for. This 
demonstrates the importance of the role of anharmonicity in forming the spectra of 
local states. In the limiting situation being discussed the spectrum of local states begins 
at the energy Ex 2hR rather than at E w hR. 

We point out still another property of equation (2). From this equation it follows 
that when [A1 >A;'), but the absolute value of the quantity 2 a  is less than the biphonon 
zone width (when A ' - A  #O,  an anharmonicity defect), a local state in the region 2hR 
does not result, though one exists in the region ha. Thus, in this way, anharmonicity 
can lead, not only to the stabilization of local states in the overtone region, but also, in 
general, to their inhibition. 

We cite here the results obtained in experimental research conducted by Belousov 
et al. (1982). In these investigations they studied the spectrum of local states in the 
frequency region w 2800 cm- ' in a I4NH4Br crystal having as an impurity the isotope 
lSN. It was first shown experimentally in these investigations that, in accordance with 
predictions, (Agranovich 1970), anharmonicity actually can lead to the formation of a 
local biphonon under conditions in which no local phonons exist. 

In the Raman spectrum of l5Nxl4Nl -,H,Br (where x=0.05) no local one-phonon 

spectrum are explained by the fact that the isotopic shift A = - 6 cm- ' (Price et al. 1960) 
is small compared to the width of the one-phonon zone (TI = 36 cm - I). The picture of a 
spectrum in this region for a natural isotope "N content (x = O.OO37) is shown in the 
figure. The narrow line at 2792.5cm-I (see figure (a)), located below the zone of 
dissociated two-particle states, corresponds, obviously, to the excitation of a biphonon. 
Its occurrence in a second-order spectrum is thus an indication of quite strong 
anharmonicity with the characteristic constant A w 30-35 cm-l. 

An additional line at ho; = 2788 cm- was found in a crystal with a natural content 
of the isotope I5N by Belousov et al. (1982). 

I vibration is set up. Its absence and the typically single-mode nature of the one-phonon 

2. Triphonons 
Let us turn now to an analysis of the triphonon spectra peculiarities. There is at 

present no experimental data indicating that bound three-phonon states (triphonons) 
have been observed. Nevertheless, interest is being shown in such states because, as has 
been pointed out, the two-phonon states (biphonons) discussed above are only the very 
simplest of phonon complexes. 

With anharmonicity of the third and fourth orders in the displacements of the 
appropriate oscillators (Landau and Lifshitz 1974) taken into account, the model 
hamiltonian can be represented in the form 

Here o is the frequency of the molecular oscillation that is renormalized with 

anharmonicity: B, and B, are the Bose creation and annihilation operators for a 
quantum of oscillations in molecules n, V,, is a matrix element of the energy operator 
for the interaction of molecules n and m, corresponding to the transition of one 
quantum of vibrations from molecule n to molecule m. The anharmonicity constant A 
determines the intensity of two-particle contact interaction. The anharmonicity 
constant A" determines the intensity of three-particle contact interaction. Constants A 
and A" should be selected in such a way that the energy values of an isolated molecule in 
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96 V. M .  Agranovich and 0. A .  Dubovsky 

2850 2800 E c ~ - l  

3 

2810 2800 2790 Ecm-’ 

Raman scattering spectra for 15Nx14N, -,H,Br crystals in the region of w4(k)+w,( -k) 
transitions. A heavy line distinguishes the region of two-particle transitions of unbound 
phonons. The peak 2788 cm- corresponds to the excitation of local biphonons. The local 
phonons do not exist. Concentrations are: (a) x =0.0037; (b) (1) x =0.0037; (2) x = 0.05 and 
( 3 )  x = 0 3 .  

a state with two and three quanta coincide with the experimental values EYp and EYp. 
This means that the value of A is determined from the relation EYP = 2ho - 2A. At the 
same time, the value of A” should be determined from the relation E?*= 3hw - 6(A + 2). 
In general, A and A” are quantities of the same order of magnitude, so that both 
components of anharmonicitx should be taken into account in equation (7) in 
observing the states of triphonons. 

Taking the aforesaid into consideration, we shall seek a wavefunction of three- 
phonon states of the form 

where Ynmp is a function symmetrical with respect to any permutation of the indices n, 
m and p. It is clear that these quantities have the meaaing of the wavefunction of three 
phonons in the coordinate representation. 
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Anharmonicity efSects for  vibrations in crystals with impurities 97 

The sckstitction of equation (8) into the Schrodinger equation 

H13) =E13) 

for the Hamiltonian (7) and the use of the appropriate commutation rules for the Bose 

operators B, and B, lead to the following system of equations: 
+ 

[ E  - 3 h o  + 2A(6,, + 6,, + drip) + 6~6,m6,,]'f',,p 

= C C Kr"rmp + V m r y n r p  + VprYnmrI (9) 

ynmp= q k l , k 2 , k 3 e x p  [li(kln+kZm+k3p)l? (10) 

I 

If, we now go over to the Fourier representation 

k i k z k 3  

then from equation (9) we find that the quantities 9 k l , k 2 , k 3  satisfy the system of 
equations: 

where 

(12) Gkl ,k2 ,k3(E)=  C E  - 3ho- V(kl)- V(k2)- v(k3)] ' 3  

V(k)= C V,,exp[ik(n-m)]. 
4 # n) 

Of interest to us in the following are states with a specified value of the total 
wavevector K = k, + k, + k,. For these states, as follows from equation (1 l), the 
function qkl, k2,k3(K)  is determined by the value of the linear combinations 

1 
S(k)=- Z'F 

N 9 k , q 9 K - k - q y  

so that equation (11) can also be written in the form 

q k ~ ,  k2 .K-  k l  - k z  + G k ~ , k 2 , K - k l  -k,(E)(2A[S(kl) + S(k2) + S(K -k, -kz)l+ 6An) =o 
Summing this equation over k, and taking equation (13) into account, we have the 
following integral equation for S(k): 

s(k)[ 1 + 2 A  1 
Gk,q ,K-k-q(E)  Gk,q ,K-k-q(E)S(q)  

1 
+6An - C G , , , , K - ~ - ~ ( E ) = O  (14) 

N 9  
Below we first consider the special case when A = 0, but A" # 0. In this case, after 

making use of the relation between the quantities S(k) and ll, we find that the energy of 
three-phonon states E is determined by the equation 

= 0, 
1 1 

1+6A"- C 
N 2  9192 E-&(Ql)-&(q,)-&(K-qql-q,) 

&(a) = ho + V(q), 
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98 I/. M .  Agranovich and 0. A .  Dubovsky 

or 

where p3(&, K) is the density of unbound three-particle states having the total 
wavevector K. This equation is analogous to the equation (Agranovich 1970) 

that determines the energy of the biphonon with wavevector K (p&, K) is the density of 
unbound two-particle states having total wavevector K). An essential, though natural, 
difference, is the appearance of the three-particle density of states in equation (15). For 
three-dimensional crystals, this circumstance leads to a comparatively large critical 
(threshold) value of a = (2A”/T1), (where Tl is the phonon zone width), beyond which (i.e. 
at (2A”/T1) > (2A”/T1),) the formation of a triphonon becomes feasible. By definition the 
quantity a is equal to the ratio of the coefficient preceding the integral in equation (15) 
to the whole width 3T1 of the zone of unbound three-particle states. The analogous 
ratio for the biphonon /? = (A/T,), <a, because the density p3(&, K) of three-particle 
states at the boundary of the three-particle continuum E, as E+E, in three-dimensional 
crystals vanishes more rapidly than the density of two-particle states at the boundary of 
a two-particle continuum (for one-dimensional and two-dimensional crystals 

Let us turn to the situation when both quantities A and A” are non-zero, and A is 
large compared to the phonon zone width Tl. In this case the formation of a triphonon 
can be conveniently regarded as the result of the bonding of a biphonon and a phonon. 
Since, by assumption, T2 M T:/A<< TI ,  a biphonon, compared to a free phonon, can be 
assumed as localized in a certain lattice site. Hence, in this limiting case (high values of 
A and arbitrary value of A”) the formation of a triphonon is formally analogous to 
the formation of a phonon localized at an isotopic defect. Since the biphonon 
energy E 2 ~ 2 h o - 2 A + O ( T : / A ) ,  and the energy of a triply excited molecule is 
EYP= 3ho - 6(A + A”), the amount of effective ‘isotopic’ shift Acff = -(4A + 6 4 .  After 
taking this into account, as well as equation (l), we reach the conclusion that the 
equation for determining the energy E of a triphonon is of the form: 

a =/? = 0). 

= 0, Pl(4dE 
1 +(4A+6A“)S E - 2ho + 2A - E 

where pl(&)  is the density of one-phonon states. 
Next we show how equation (16) follows from (14) and, at the same time, take the 

dispersion of the triphonon into account. For this purpose we first discuss the energy 
zone E(K, k), determined by the equation 

IV 9 

After comparing this equation with the equation that determines the energy of a 
biphonon (see Agranovich 1970), we come to the conclusion that 

E(K, k) = E2(K - k) + &(k) (18) 

where E,(K - k) is the energy of a biphonon having the wavevector K - k. Thus the 
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Anharmonicity efects for vibrations in crystals with impurities 99 

energy zone (18) corresponds to superposition of the states of a free biphonon and a free 
phonon. 

We assume in the following that the anharmonicity constants A and A" are such that 
the triphonon state being discussed is split off from the two-particle continuum (18) 
under conditions in which the dispersion of states in the three-particle continuum can 
be ignored. It is clear that this is feasible only for triphonons with energy E for which 
1E - 3ho)  >> 3T1, as is assumed below. In this approximation we have 

so that equation (14) takes the form 

[ E  - 3ho]Fk(E, K)S(k) + (4A + 6 4 I I  = 0. 

After taking equation (1 3) into consideration, we obtain from the preceding equation 
the dispersion equation 

4A + 62 1 
'7 [E-3ho]Fk(E, K) =" 

Making use of the identity 

E -1 ,  2A 1 
N 
- 

E,(K - k) - ~ ( e )  - E(K - k - q) 

we find that 

Fk(E, K ) s  -2A[E-~(k)-Ez(I<-k)l 

1 
* - C { [ E  - ~ ( k )  - ~(q)  - E(K - k -q)][E,(K - k) - ~ ( q )  - E(K - k - q)]) - 
N ,  

With the assumptions ( ( E  - 3hol>> 3 Tl and A >> TI) that were made, we have 

E - ~ ( k )  - E(q) - E(K - k - 4) "N E - 3 h ~ ,  

E,(K - k)- E(q)-E(K - k- q)% -2A, 

so that instead of equation (19) we obtain the desired dispersion equation 

4A + 6A" 1 
"7 E-E,(K-k)-e(k)=oy 

which coincides to an accuracy of small corrections of the order of (Tl/A)2 with 
equation (16). Bht this equation, in contrast to equation (16), enables the dispersion 
curve of a triphonon to be determined, i.e. the dependence E = E(K). We point out that 
since A and A" can have different signs, both in equation (16) and in equation (20) there is 
the possibility of compensation of the contributions due to two-particle and three- 
particle anharmonicity (i.e., for example, 14A + 621 < Tl is feasible). In this case the 
triphonon energy, as follows from equation (20), is close to the zone of disassociated 
states [see equation (1811, and the radius of the triphonon can substantially increase. 

For the case 2=0,  Mattis and Rudin (1984) employing numerical methods 
determined the dependence of the energy of bound three-particle states in a crystal on 
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100 Anharmonicity eflects for vibrations in crystals with impurities 

the anharmonicity constant A.  This showed, among other matters, that in the region 
where A = 0-33T1 the formation of bound three-particle states, described by Efimov 
(1970), becomes feasible. 

The paper by Mattis and Rudin (1984) does not include an analysis of the 
dependence of triphonon energy on the wavevector K. Such a dependence is necessary 
for discussing the possibility of the localization and we have one comment to make. In 
the limiting case of strong anharmonicity ( A  > TI and A”> 0) both the biphonon and 
triphonon correspond, to high accuracy, to the state of a crystal in which two phonons 
(biphonon) or three phonons (triphonon) are localized at one site, and this excited state 
of the molecule propagates coherently through the crystal. Therefore, to estimate the 
zone width of the biphonon or that of the triphonon, it is sufficient to estimate the 
amplitude of the transition of such a localized state from one lattice site to the 
neighbouring one, using perturbation theory with respect to V,, (see equation (7)). 

For a biphonon such an amplitude is determined by the matrix element 

where i is the initial state: both phonons ‘sit’ at site n; s is the virtual state: one phonon 
‘sits’ at site n and the other at site m;fis the final state: both phonons ‘sit’ at site m. 
It is clear that Ei = 2hw - 2A, E, = 2hw and ( i l f i l s )  = (slfil f ) = V,,, so that 
W,, = -( Vnd2/2A.  Consequently, the biphonon zone width T, % T:/2A, as previously 
indicated. 

Similarly, for the triphonon 

in which there is one phonon in state s’ at site m, in state s“ two phonons, etc. An 
elementary consideration leads to the estimate 

T: 
Km (4A + 6 4 ,  * 

It follows from this estimate that for a triphonon the condition of strong anharmonicity 
corresponds to the inequality 

TI << 14A + 6A”I. 

Also of interest is an analysis of the effect of Fermi resonance on triphonon structure 
(for example, resonance of a phonon and a triphonon, of a biphonon and a triphonon, 
etc.). 
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